
Chair of Software Engineering for Business Information Systems (sebis)
Department of Computer Science
School of Computation, Information and Technology (CIT)
Technical University of Munich (TUM)
wwwmatthes.in.tum.de

Design, Implementation, and Assessment of an
Improved Revocation Mechanism for Verifiable
Credentials
Researcher: Srajit Sakhuja
PhD Supervisor: Mr. Felix Hoops

8th August 2023 | Advanced Seminar

Agenda
Understanding the Background

- Core Concepts
- Verifiable Credentials (VCs)
- Decentralized Identifiers (DIDs)
- Status List 2021

- Gaps in the Status Quo

Defining the Problem

Solving the Problem
- Finding a Suitable Data Structure

- The AMQFilter Interface
- AMQ Filters- Bloom Filters, Cuckoo Filters
- Experiments with AMQ Filters

- Research Roadmap

Understanding the Background

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Overview of Verifiable Credentials (VCs)

- Real World Entities to make claims about themselves

- Two categories of information:

- Claims e.g., names, titles of bachelor’s theses,

medical records, etc.

- Signatures - proof that the claims are true e.g.,

holograms, bar codes

- A digital (and decentralised) alternative to a physical

document

Issuer Real World
Entity Verifier

Issues VerifiesRequests/
Presents

Verifiable
Credential

VCs are a foolproof way for

- Real World Entities to stake claims

- Issuers to ensure that the claims are

tamper-proof

- Verifiers to ensure that the claims are

not falsehoods

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

Quick show of hands:
How many of us are familiar with Public Key

Infrastructure (PKI), or asymmetric encryption, or
JSON Web Tokens (JWTs)?

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

Claims Signature

Verifiable Credential

generates
verifies

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

Claims Signature

Verifiable Credential

generates
verifies

Verifier

obtains

DIDs - Decentralised
Identifiers

Status List 2021

- DIDs + VCs = Indefinite ownership over claims

- An appendage to enable revocation / temporary

suspension of VCs

- Bitstring with 1s indicating revoked VCs

- Design Goals

- Privacy

- Scalability

- Minimum Propagation Delay

Status List with 2 revocations;

16 KB = 131,072 VCs

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Gaps in Status Quo

- Status List 2021 falls short on the design

goals

- Privacy

- Scalability v/s Minimum

Propagation Delay

 A Verifiable Credential with a credentialStatus field

An instance of Status List 2021

- 250M drivers’ license holders in the US

- 1 / 10.000 has their license suspended every year

- 25.000 drivers’ license suspended every year

- 70 drivers’ license suspended (and reinstated)

every day

- 150 blockchain transactions per day!

Verifier

1. reads the
whole Status List

2. finds the
value at

Defining the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Three Design Considerations for any Revocation
Mechanism - Privacy, Scalability, Minimum Propagation
Delay

Privacy: (a) Only the issuer, the holder, and the verifier should know that the VC has been revoked,
(b) The issuer should not know who the verifier is

Scalability: Designed for planet-scale - universities issuing degrees over the course of a century, the
American DMV

Minimal Propagation Delay: minimal delay to minimize the misuse of an effectively invalid VCs; use case
dependent - the traffic police can download a fresh copy for every case, the passport control can use
some caching.

Solving the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Solving the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Data Structure

Solving the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Data Structure
Essentially a collection!
Which data structure do you usually
use for storing arbitrary elements?

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

- Research from 2020 by Mozilla’s Security Group

- Introduced as a mechanism for revoking

SSL/TLS certificates

- The underlying data structure is a Bloom Filter

- A Bloom Filter is an AMQ - Approximate

Membership Query data structure

- (potentially) returns False positives

- No means No | Yes means maybe Yes

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

Insertion algorithm:

1. Add all revoked VCs to the filter level 1

2. Iterate over all valid VCs to find level 1’s FP set

3. Add all the VCs in the FP set to filter level 2

4. Iterate over all revoked VCs to find level 2’s FP set

5. Repeat until FP set is empty for a level

(Termination criteria)

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

stores revoked VCs

stores valid VCs

stores revoked VCs

Insertion algorithm:

1. Add all revoked VCs to the filter level 1

2. Iterate over all valid VCs to find level 1’s FP set

3. Add all the VCs in the FP set to filter level 2

4. Iterate over all revoked VCs to find level 2’s FP set

5. Repeat until FP set is empty for a level

(Termination criteria)

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

stores revoked VCs

stores valid VCs

stores revoked VCs

isContained algorithm:

- The only conclusive answer is “No”

(recall - No means No | Yes means maybe Yes)

- No at an odd level => not revoked

- No at an even level => revoked

- The last level has no FPs (recall: termination criteria)

=> No means No | Yes means maybe Yes

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

AMQFilter Interface

Deterministic Set
Membership

Data Structure

CascadingThe Novel
Idea in CRLite

prone to false positives -
probabilistic in answers to
membership queries

no false positives/negatives -
deterministic in answers to
membership queries

void insert(E element)
boolean maybeContains(E
element)

Overview of the Filter Benchmarking Setup and results

- Data generation: A randomly
generated set of integer values;
size ∈ [2^8, 2^23]; revocation rate
10%

- A interface-based benchmarking code
where the underlying AMQFilter can
rapidly be changed

- Bloom Filters
- Cuckoo Filters
- XOR Filters

- Results (raw data on next slide):
- Computation time ranging from

60 ms for 100k VCs to 4000 ms
for 8M VCs

- Filter size (see adjacent graph)

Overview of the Filter Benchmarking Setup and results

Future Roadmap

Research Question Timeline

Identifying requirements and design goals for revocation/suspension mechanisms for
VCs
Identifying key metric dimensions to be considered for these requirements/design goals
Identifying use cases and categorising them on these key metric dimensions

W1 - W3

Researching the state of the art for data structures that support exclusion operations
Identifying parallels between revocation schemes used by TLS and the VC ecosystem
Identifying the differences in requirements between TLS and the VC ecosystem

W4 - W8

Delineating possible options for an alternative Revocation/Suspension mechanism
Categorizing them based on the use cases defined above
Benchmarking/evaluating candidate data structures

W9 - W14

Building/Designing the E2E revocation infrastructure
Experiments with off-chain data storage systems e.g. IPFS
Benchmarking with other systems e.g. Status List 2021

W15 - W20

Collating the research into document form, preparing for the thesis defence W21 - W23

Zooming out to the Research Roadmap

- Identifying use cases and benchmarking them on the
basis of their needs to optimise scale v/s minimum
propagation delay

- Building/Designing the E2E revocation infrastructure
- Proposed changes to the VC standard
- Publishing the revocation list for different use

cases to a DLT system
- Experiments with off-chain data storage systems

e.g. IPFS

Q & A

Technical University of Munich (TUM)
TUM School of CIT
Department of Computer Science (CS)
Chair of Software Engineering for
Business Information Systems (sebis)

Boltzmannstraße 3
85748 Garching bei München

+49.89.289.

wwwmatthes.in.tum.de

Florian Matthes
Prof. Dr.

17132
matthes@in.tum.de

http://wwwmatthes.in.tum.de/

Backup slides after this point

Decentralized Identifiers (DIDs) - route to the Issuer’s
Metadata

Issuer

did:btcr:xz35-jzv2-qqs2-9wjt
did:ethr:0xE6Fe788d8ca214A080b0f6ac7F48480b2AEfa9a6

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

DID are:

- Resolvable to DID document -> used to obtain metadata

about the issuing party.

- Cryptographically verifiable - asymmetric cryptography

is used to ensure this

- Decentralized - a central authority is not required to

allocate DIDs

- No single point of failure

- No unilateral revocation by an authoritarian

central server

AMQFilter Interface

1. void insert(E element)
2. boolean maybeContains(E element)
3. [optional] void delete(E element)

Any Hash function

“partial-key cuckoo
hashing to derive an
item’s alternate location
based on its fingerprint”

i1 = hash(x)
i2 = i1 ^ hash(f)
i1 = i2 ^ hash(f)
 = i1 ^ hash(f) ^ hash(f)
 = i1 ^ 0
 = i1

8 buckets with 4 entries
per bucket

AMQFilter Interface

1. void insert(E element)
2. boolean maybeContains(E element)
3. [optional] void delete(E element)

Any Hash function

“partial-key cuckoo
hashing to derive an
item’s alternate location
based on its fingerprint”

i1 = hash(x)
i2 = i1 ^ hash(f)
i1 = i2 ^ hash(f)
 = i1 ^ hash(f) ^ hash(f)
 = i1 ^ 0
 = i1

8 buckets with 4 entries
per bucket

Trivial

Trivial

Cuckoo Filters

Quick Overview

- AMQ data structures like Bloom filters don’t need to store
‘anything’ related to the original element - only bits

- DSM data structures like Sets, Maps need to store the original
element because there is a possibility of rehashing -> when we
have more elements than we allocated space for, hash
collisions, etc.

- Cuckoo Filters take ideas from both
- eviction and relocation of elements needs to store

‘something’
- Fingerprints - unique proxy for the element, upper

bound on the size of what is being stored
- [+ve side effect] privacy - we don’t want raw VCs to be

stored in the AMQ data structure

Research Questions

1. What requirements exist for revocation/suspension mechanisms for VCs?
a. What general requirements can we identify?
b. What are key metric dimensions we need to consider?
c. Can we look at some example use cases and place them on the key metric dimensions to validate?

2. What is the state of the art for data structures that support exclusion operations?
a. What work exists towards VC revocation/suspension specifically?
b. What can we learn from other (experimental) revocation schemes for TLS certificates?

Some examples include Bloom Filters, Mozilla CRLite.
c. Compared to TLS, what significant differences in requirements/environment can we identify for a VC ecosystem?

3. Choosing or designing the Revocation/Suspension data structure
a. Delineating possible options
b. Categorizing options based on use case requirements (see 1c)
c. Benchmarking/evaluating candidate data structures

4. Building/Designing the E2E revocation infrastructure i.e., in tandem with a DLT
a. How can we minimize cost?
b. Do we need to keep data off-chain and if so, what data and where?
c. What key metrics of the system can we measure and benchmark with other systems?

Core Concepts: Verifiable Credentials (VCs)

- Foolproof way for real-world
entities to stake claims - claim +
signature

- Issuing Party
- Holder
- Verifying Party

W3C Standard that has seen mature
development since 2019;

vc-data-model-2.0 is in the works

Core Concepts: Decentralised Identifiers (DIDs)

- Uniform Resource Locator (URI) leading to
the DID document

- Multiple specifications
did:btcr:xz35-jzv2-qqs2-9wjt

did:ethr:0xE6Fe788d8ca214A080b0f6ac7F48480b2AEfa9a6

- Design Properties
- Resolvable
- Cryptographically Verifiable
- Decentralised (self-certifying identifiers)
- Permanent (even with Key Rotation)

Syntax of Decentralized Identifiers (DIDs)

The DID Trust Triangle

