sebis Tum

Design, Implementation, and Assessment of an
— Improved Revocation Mechanism for Verifiable
Credentials

Researcher: Srajit Sakhuja
— PhD Supgrvisor: Mr. Felix Hoops

y ' T I s ‘ =

Chair of Software Engineering for Business Information Systems (sebis)
Department of Computer Science

School of Computation, Information and Technology (CIT)

Technical University of Munich (TUM)

wwwmatthes.in.tum.de

——

Agenda

Understanding the Background
- Core Concepts
- Verifiable Credentials (VCs)
- Decentralized Identifiers (DIDs)
- Status List 2021
- Gaps in the Status Quo

Defining the Problem

Solving the Problem
- Finding a Suitable Data Structure
- The AMQFilter Interface
- AMQ Filters- Bloom Filters, Cuckoo Filters
- Experiments with AMQ Filters
- Research Roadmap

T

Understanding the Background

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Overview of Verifiable Credentials (VCs)

- Real World Entities to make claims about themselves
- Two categories of information:
- Claims e.g., names, titles of bachelor’s theses,
medical records, etc.
- Signatures - proof that the claims are true e.g.,
holograms, bar codes
- Adigital (and decentralised) alternative to a physical
document

Issues

VCs are a foolproof way for

- Real World Entities to stake claims

- Issuers to ensure that the claims are
tamper-proof

- Verifiers to ensure that the claims are
not falsehoods

Real World
Entity

L’ ‘.I.

Requests/

Verifies
Presents

Q Verifiable

Credential

Verifier
B
Eﬁ% UNIVERSITY

—

Lﬁi~

TUTI

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

Quick show of hands:
How many of us are familiar with Public Key
Infrastructure (PKI), or asymmetric encryption, or
JSON Web Tokens (JWTs)?

T

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

e

UNIVERSITY

T [ssuer
———

Creates & Creates &
secures Publishes

{ Private Key Public Key }

‘J Cryptographically L
bound

=

T

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

ap
ol|gaa[g
Olooo|0
UNIVERSITY GRS
ﬂlﬁlﬂl [Issuer
Creates & Creates &
secures Publishes
{ Private Key J Eryptographically L Public Key }
bound
(O=]
generates
@ verifies
\ e
. 8 .
Claims = Signature
Qe

Verifiable Credential

T

DIDs, VCs, and Asymmetric Encryption - a seamless
certification system

e

UNIVERSITY

—_—

Creates & Creates &

secures Publishes DIDs - Decentralised

Identifiers

{ Private Key Public Key J

‘J Cryptographically L

bound
c= _
generates obtains
verifies
—

X
o O o
Claims = ﬂ Signature Verifier
o

Verifiable Credential

TUTI

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

o)

Status List 2021

DIDs + VCs = Indefinite ownership over claims
An appendage to enable revocation / temporary

suspension of VCs Revoked Credentials
Bitstring with 1s indicating revoked VCs * ..
Design Goals

Privacy Status List with 2 revocations;

Scalability 16 KB = 131,072 VCs

Minimum Propagation Delay

Gaps in Status Quo

- Status List 2021 falls short on the design
goals
- Privacy
- Scalability v/s Minimum
Propagation Delay

"@context": [
"https://www.w3.0rg/2018/credentials/v1",
"https://w3id.org/vc/status-1ist/2021/v1"
])
"id": "https://example.com/credentials/status/3",
"type": ["VerifiableCredential", "StatusList2@21Credential”],
"issuer": "did:example:12345",
"issued": "2021-04-05T14:27:40Z",
"credentialSubject": {
"id": "https://example.com/status/3#list",
"type": "StatusList2021",
"statusPurpose": "revocation",
"encodedList":

}

1
“proof's { ...)

An instance of Status List 2021

s"statustistIndex”:|"94567"

"@context": [
"https://www.w3.0rg/2018/credentials/v1",
"https://w3id.org/vc/status-1ist/2021/v1"

1,
"id": "https://example.com/credentials/23894672394",
"type": ["VerifiableCredential"]J
"issuer": "did:example:12345",
"issued": "2021-04-05T14:27:42Z2",
"credentialStatus": {

"id": "https://example.com/credenti

"type": "StatusList2021Entry",

"statusPurpose": "revocation’s

Verifier

2. finds the
value at
/status/3#94567"

1. reads the
whole Status List

'https://example.com/credentials/status/3"

"statusListCredential®.:

Ject": {

"credentia
id*r "did:example:6789",

proof”: { <=« }

A Verifiable Credential with a credentialStatus field

- 250M drivers’ license holders in the US

- 1/ 10.000 has their license suspended every year

- 25.000 drivers’ license suspended every year

- 70 drivers’ license suspended (and reinstated)
every day

- 150 blockchain transactions per day!

Defining the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Three Design Considerations for any Revocation
Mechanism - Privacy, Scalability, Minimum Propagation
Delay

Privacy: (a) Only the issuer, the holder, and the verifier should know that the VC has been revoked,
(b) The issuer should not know who the verifier is

Scalability: Designed for planet-scale - universities issuing degrees over the course of a century, the
American DMV

]
Minimal Propagation Delay: minimal delay to minimize the misuse of an effectively invalid VCs; use case
@ dependent - the traffic police can download a fresh copy for every case, the passport control can use
some caching.

Solving the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

Solving the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

- Data Structure

Solving the Problem

Design, Implementation, and Assessment of an Improved
Revocation Mechanism for Verifiable Credentials

| Essentially a collection!
----~ Data Structure Which data structure do you usually
use for storing arbitrary elements?

TUTI

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

Certificate's Identifier

- Research from 2020 by Mozilla’s Security Group o
Introduced as a mechanism for revoking *

SSL/TLS certificates '
- The underlying data structure is a Bloom Filter Biis st >~ (ot Revoked
- A Bloom Filter is an AMQ - Approximate -

Filter Level 2

Membership Query data structure
- (potentially) returns False positives
- No means No | Yes means maybe Yes

{

Bit is set? E— Revoked

Filter Level 3 Y“'Si

Yes

No
Revoked - Bit is set? ——» Not Revoked

TUTI

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

Certificate's Identifier

FilﬁrLeve!l l
i

Insertion algorithm: Btisserr S (SEEIRERE
Add all revoked VCs to the filter level 1 I ves |

Iterate over all valid VCs to find level 1’s FP set n
Add all the VCs in the FP set to filter level 2
Iterate over all revoked VCs to find level 2’s FP set

No
Bit is set? E— Revoked

vk winN e

Repeat until FP set is empty for a level Fﬂfeﬂrw ves|

(Termination criteria)

Y

Yes No
Revoked - Bit is set? ——» Not Revoked

TUTI

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

Certificate's Identifier StOI"ES revoked VCS
FilﬁrLeve!l l
i
Insertion algorithm: arissee 0, (SRR
1. Add all revoked VCs to the filter level 1 _—— ves | stores valid VCs
. - ’ OO0
2. lterate over all valid VCs to find level 1’s FP set n
3. Add all the VCs in the FP set to filter level 2 .
Bit is set? e Revoked
4. Iterate over all revoked VCs to find level 2’s FP set
5. Repeat until FP set is empty for a level LA Yes
peatun o PrY i“”é stores revoked VCs
(Termination criteria) |

Y

Yes No
Revoked - Bit is set? ——» Not Revoked

TUTI

Drawing Inspiration from TLS Certificates: CRLite and the

concept of Cascading Filters

isContained algorithm:

- The only conclusive answer is “No”
(recall - No means No | Yes means maybe Yes)

- No at an odd level => not revoked

- No at an even level => revoked

- The last level has no FPs (recall: termination criteria)
=> No means No | Yes means maybe Yes

Certificate's Identifier Sto res revo ke d VCS
Filﬁr Level 1 l
v
Bit is set? N—°> Not Revoked
5 ves| stores valid VCs
lterLevel2
|
\
No
Bit is set? E— Revoked
Filter Leyel3 ves|
r”“ stores revoked VCs
I

Y

Yes No
Revoked - Bit is set? ——» Not Revoked

TUTI

Drawing Inspiration from TLS Certificates: CRLite and the
concept of Cascading Filters

AMQFilter Interface

vold insert (E element)
boolean maybeContains (E

The Novel Cascading
Idea in CRLite

Deterministic Set
Membership
Data Structure

TUTI

Overview of the Filter Benchmarking Setup and results

- Data generation: A randomly

generated Set Of Integer Values' Total cascading filter size (KB) v/s Total Verifiable Credential Count (10% revocation rate)
size € [2/8, 2*23]; revocation rate . BN CosoleingCuckooriter I CoscadingBioorsFiter NN Cascading¥orFter
10%

- Ainterface-based benchmarking code
where the underlying AMQFilter can ——
rapidly be changed flter sze (k8)

600

- Bloom Filters
- Cuckoo Filters

- XOR Filters ~ ==

0

400

- Results (raw data on next slide):
- Computation time ranging from Total Verifiable Credential Count (10% revocaion ate)
60 ms for 100k VCs to 4000 ms
for 8M VCs

- Filter size (see adjacent graph)

Overview of the Filter Benchmarking Setup and results

Total VC Count

65536

Filter Type

CascadingCuckooFilter
CascadingBloomFilter
CascadingXorFilter
CascadingCuckooFilter
CascadingBloomFilter

072| CascadingXorFilter

262144

524288

1048576

2097152

4194304

| 8388608 k

CascadingCuckoofFilter
CascadingBloomFilter
CascadingXorFilter
CascadingCuckoofFilter
CascadingBloomFilter
CascadingXorFilter
CascadingCuckoofFilter
CascadingBloomFilter
CascadingXorFilter
CascadingCuckoofFilter
CascadingBloomFilter
CascadingXorFilter
CascadingCuckooFilter
CascadingBloomFilter
CascadingXorFilter
CascadingCuckooFilter
CascadingBloomFilter
ascadingXorFilter

Revoked VC count

6554

13108

26215

52429

104858

209716

419431

838861

layers

Layer-wise
size (bits)
3 [12288|384|12|]
3 [94232|536(|104]]
4 [8115|351|87|57|]
4 [24576|192|48|6|]
3 [188464|1168|144]]
4 [16176|621]117|57|]
3 [49152|384/|96|]
3 [376912|2048|26144]]
4 [32298|1206|183|63|]
4 [98304|768|96|6|]
3 [753808|4504(|848]]
5 [64542|2271|318|60|57|]
4 [196608|1536|384|6]]
3 [1507616|8504|1584]]
5 [129030[4719|576|75|57|]
4 [393216|3072|768|6|]
3 [3015224|24304|3240])
6 [258006|9030|1029|96|57|57]]
4 [786432|6144|768|12|]
3 [6030432|38192|7104|)
7 [515955|18228|2109|117|63|57|57]]
5 [1572864|12288|1536|24/6|]
5 [12060840|75272|12440|88|32|]
5 [1031853|36480]|4026|201|78]]

Total cascading Total cascading
filter size (bits) filter size (bytes)

12684 1685.5
94872 11859
8610 1076.25
24822 3102.75
189776 23722
16971 2121.375
49632 6204
405104 50638
33750 4218.75
99174 12396.75
759160 94895
67248 8406
198534 24816.75
1517704 189713
134457 16807.125
397062 49632.75
3042768 380346
268275 33534.375
793356 99169.5
6075728 759466
536586 67073.25
1586718 198339.75
12148672 1518584
1072638 134079.75

Total cascading | Layer-wise

filter size (KB) FP count

1.59 [227]6|0]]
11.86 [37]7|0]]
1.08 [242]27]2/0]]
3.11|108J25/1/0]]
23.73 |[81]10]0]]
2.13|[461|511/0]]
6.21 [172]46|0]]
50.64 [142|1818|0]]
4.22 [936/104]6/0]]
12.4 [433[56/1(0]]
94.9 [313|59|0]]
8.41 [1802]215/4|2]0]]
24.82 [713[138[1|0]]
189.72 [591/110]0]]
16.81 [3793]424|16[2|0
49.64 [1530/476/3(0]]
380.35 [1690[225/0]]
33.54 [7297|792/34|1[1
99.17 [3039|459/4|0]]
759.47 [2656|494(0]]
67.08 [14774]167150]¢
198.34 |[6060]983|11(3|0
1518.59 |[5235/865(6/2|0]]
134.08 |[29615|3230|119

Computation
time (ms)

39
34
42
64
63
62
102
112
127
226
294
262
454
658
439
1089
1048
1128
1942
2159
2328
5390
4482
4319

Future Roadmap

Research Question Timeline

Identifying requirements and design goals for revocation/suspension mechanisms for W1-W3
VCs

Identifying key metric dimensions to be considered for these requirements/design goals

Identifying use cases and categorising them on these key metric dimensions

Researching the state of the art for data structures that support exclusion operations W4 - W8
Identifying parallels between revocation schemes used by TLS and the VC ecosystem
Identifying the differences in requirements between TLS and the VC ecosystem

Delineating possible options for an alternative Revocation/Suspension mechanism W9 - W14
Categorizing them based on the use cases defined above
Benchmarking/evaluating candidate data structures

Building/Designing the E2E revocation infrastructure W15 - W20
Experiments with off-chain data storage systems e.g. IPFS
Benchmarking with other systems e.g. Status List 2021

Collating the research into document form, preparing for the thesis defence W21 - W23

Zooming out to the Research Roadmap

- ldentifying use cases and benchmarking them on the
basis of their needs to optimise scale v/s minimum
propagation delay

- Building/Designing the E2E revocation infrastructure

- Proposed changes to the VC standard

- Publishing the revocation list for different use
cases to a DLT system

- Experiments with off-chain data storage systems
e.g. IPFS

Q&A

Prof. Dr.

Florian Matthes

Technical University of Munich (TUM)
TUM School of CIT

Department of Computer Science (CS)
Chair of Software Engineering for
Business Information Systems (sebis)

Boltzmannstrafie 3
85748 Garching bei Miinchen

+49.89.289.17132
matthes@in.tum.de
wwwmatthes.in.tum.de

http://wwwmatthes.in.tum.de/

Backup slides after this point

Decentralized Identifiers (DIDs) - route to the Issuer’s
Metadata

{
"@context": [p— DID method specific
"
"https://www.w3.0rg/2018/credentials/v1", A ',AAAAEJEEAAAA\
lssuer "https://w3id.org/vc/status-list/2021/v1" did:example:1234567abcdefghi
1, DID method

"id": "https://example.com/credentials/23894672394",
"type": ["VerifiableCredential"],
"issuer": "did:example:12345",
"issued": "2021-04-05T14:27:427Z",
"credentialStatus": {

"id": "https://example.com/credentials/status/3#94567"

"type": "StatusList2021Entry",

"statusPurpose": "revocation",

"statusListIndex": "94567",

"statusListCredential”: "https://example.com/credentials/status/3"
b
"credentialSubject": {

"id": "did:example:6789",

"type": "Person"
s
"proof": { <= }

L

UNIVERSITY

did:bter:xz35-jzv2-9ggs2-9wjt
did:ethr:0xE6Fe788d8ca214A080b0f6ac7F48480b2AEfa%a6

T

DIDs, VCs, and Asymmetric Encryption - a seamless

certification system

DID are:

- Resolvable to DID document -> used to obtain metadata
about the issuing party.
- Cryptographically verifiable - asymmetric cryptography
is used to ensure this
- Decentralized - a central authority is not required to
allocate DIDs
- No single point of failure
- No unilateral revocation by an authoritarian
central server

[DID Controller

DID method specific
scheme string
S /
did:example:1234567abcdefghi

H_J

DID method

Creates &
secures

{ Private Key

1 Publishes (Decentralized }

L Identifier

proates & Generates
Publishes
J Cryptographically L Public Key]
bound
(=

=

J

AMQFilter Interface

void insert(E element)
boolean maybeContains(E element)
[optional] void delete(E element)

Algorithm 1: Insert (x)

f = fingerprint(x);

i1 = hash(x);

ip = i; @ hash(f);

if bucket[i,] or bucket[i;] has an empty entry then
add f to that bucket;
return Done;

/| must relocate existing items;
i = randomly pick i; or i,;
for n = 0; n < MaxNumKicks; n++ do
randomly select an entry e from bucket[];
swap f and the fingerprint stored in entry e;
i =i ® hash(f);
if bucket[i] has an empty entry then

add f to bucket[i];
L return Done;

/| Hashtable is considered full,
return Failure;

8 bUCketS Wlth 4 entrles (c) A cuckoo filter, two hash per item and

per bucket

Any Hash function

‘partial-key cuckoo
hashing to derive an
item’s alternate location
based on its fingerprint”

i1 = hash(x)

i2 =i1 * hash(f)

i1 =2 * hash(f)

i1 A hash(f) » hash(f)
i120

i1

N o o s N = o

functions and four entries per bucket

1.
2.
3.

AMQFilter Interface

void insert(E element)

boolean maybeContains(E element

[optional] void delete(E element)

Algorithm 2: Lookup (x)
f = fingerprint(x);
i1 = hash(x);
ip = i; ® hash(f);
if bucket[i;] or bucket[i,] has f then

| return True;

Trivial

return False;

Algorithm 3: Delete (x)

f = fingerprint(x);

i1 = hash(x);

ip = i1 ® hash(f);

if bucket[i;] or bucket[i,] has f then
remove a copy of f from this bucket;
return True;

Trivial

return False;

Algorithm 1: Insert (x)

f = fingerprint(x);

i1 = hash(x);

ip = i; @ hash(f);

if bucket[i,] or bucket[i;] has an empty entry then
add f to that bucket;

L return Done;

/| must relocate existing items;

i = randomly pick i; or i,;

for n = 0; n < MaxNumKicks; n++ do
randomly select an entry e from bucket[];
swap f and the fingerprint stored in entry e;
i =i ® hash(f);

if bucket[i] has an empty entry then

\\ add f to bucket[i];

return Done;

// Hashtable is considered full,
return Failure;

8 bUCketS Wlth 4 entrles (c) A cuckoo filter, two hash per item and

per bucket

Any Hash function

‘partial-key cuckoo
hashing to derive an
item’s alternate location
based on its fingerprint”

i1 = hash(x)

i2 =i1 * hash(f)

i1 =2 * hash(f)

i1 A hash(f) » hash(f)
i120

i1

N o o s N = o

functions and four entries per bucket

Cuckoo Filters

Quick Overview

- AMQ data structures like Bloom filters don’t need to store
‘anything’ related to the original element - only bits
- DSM data structures like Sets, Maps need to store the original
element because there is a possibility of rehashing -> when we
have more elements than we allocated space for, hash
collisions, etc.
- Cuckoo Filters take ideas from both
- eviction and relocation of elements needs to store
‘something’
- Fingerprints - unique proxy for the element, upper
bound on the size of what is being stored
- [+ve side effect] privacy - we don’t want raw VCs to be
stored in the AMQ data structure

—w
b | ™\
| , relocate

’
/
L%

\
\ relocate
> gl
7

N OO A W N = O
(1]

(a) before inserting item x

N O g s W N = O
o

(b) after item x inserted

Research Questions

1. What requirements exist for revocation/suspension mechanisms for VCs?

a. What general requirements can we identify?

b. What are key metric dimensions we need to consider?

C. Can we look at some example use cases and place them on the key metric dimensions to validate?
2. What is the state of the art for data structures that support exclusion operations?

a. What work exists towards VC revocation/suspension specifically?

b. What can we learn from other (experimental) revocation schemes for TLS certificates?

Some examples include Bloom Filters, Mozilla CRLite.

C. Compared to TLS, what significant differences in requirements/environment can we identify for a VC ecosystem?
3. Choosing or designing the Revocation/Suspension data structure

a. Delineating possible options

b. Categorizing options based on use case requirements (see 1c)

C. Benchmarking/evaluating candidate data structures
4. Building/Designing the E2E revocation infrastructure i.e., in tandem with a DLT

a. How can we minimize cost?

b. Do we need to keep data off-chain and if so, what data and where?

¢. What key metrics of the system can we measure and benchmark with other systems?

Core Concepts: Verifiable Credentials (VCs)

- Foolproof way for real-world
entities to stake claims - claim +
signature

- Issuing Party

- Holder

- Verifying Party

TUTI

VERIFIABLE CREDENTIALS DATA MODEL V1.1 PUBLICATION HISTORY

See also the history of the other specifications of the series: vc-data-model-2.0

2022-03-03
2021-11-09
2019-11-19
2019-09-05
2019-07-25
2019-03-28
2019-02-08
2017-08-03

Verifiable Credentials Data Model v1.1 Recommendation
Verifiable Credentials Data Model v1.1 Recommendation
Verifiable Credentials Data Model 1.0 Recommendation
Proposed Recommendation

Candidate Recommendation Snapshot

Candidate Recommendation Snapshot

Working Draft

First Public Working Draft

W3C Standard that has seen mature
development since 2019;
ve-data-model-2.0 is in the works

TUTI

Core Concepts: Decentralised ldentifiers (DIDs)

- Uniform Resource Locator (URI) leading to <cheme DID method specific
the DID document string
5 r & N
- Multiple specifications did:example:1234567abcdefghi
\ﬂ_/

did:btcr:xz35-jzv2-qgs2-9wjt
did:ethr:0xE6Fe788d8ca214A080b0f6acTF48480b2AEFa9a6 DID method

i i Syntax of Decentralized Identifiers (DIDs
- Design Properties yntax iz ifiers (DIDs)

- Resolvable
- Cryptographically Verifiable ‘ N cuoishes |L T]
- Decentralised (self-certifying identifiers) ERLIIEN
- Permanent (even with Key Rotation) Creates & Creates & Generates
secures Publishes
[Private Key I Cryptographically | Public Key]

bound

The DID Trust Triangle

